Подпишитесь на нашу ежедневную рассылку с новыми материалами

Наука


Инженеры из Массачусетского технологического университета записали на видео возбуждение электронов, происходящее на поверхности топологических изоляторов. Работа опубликована в журнале Physical Review Letters, кратко ее содержание можно прочитать на сайте университета.

Внимание! У вас отключен JavaScript, ваш браузер не поддерживает HTML5, или установлена старая версия проигрывателя Adobe Flash Player.

Открыть/cкачать видео (820.53 КБ)

Записать динамику электронного феномена, который длится не более 5 пикосекунд (10-12 секунд) удалось при помощи особого вида спектроскопии. Вначале поверхность материала облучали возбуждающим электроны лазерным импульсом. После некоторой паузы следовала вторая вспышка света, которая падала на электроны, уже находящиеся в возбужденном состоянии. Анализируя спектр отраженного света, ученые получали данные о состоянии электронов в момент второго импульса. Паузу между первой и второй вспышками постепенно увеличивали, что позволило получить динамическую картину возбуждения.

Фото: mit.edu
Фото: mit.edu

Сложность подобного эксперимента заключается в том, что для изучения таких быстрых явлений, как возбуждение электронов, требуются лазеры, способные выдавать крайне короткие вспышки. Длительность импульса лазера, который применили ученые, не превышала нескольких фемтосекунд (10-15 секунд). Для сравнения: расстояние, которое проходит свет за одну секунду составляет 300 тысяч километров, за одну фемтосекунду - 300 нанометров. Ранее инженеры использовали такой лазер, чтобы "заглянуть за угол" - восстановить изображение по рассеянному свету короткого импульса.

В результате авторам удалось показать, как поверхностные электроны в селениде висмута проникают вглубь материала и как этот процесс зависит от температуры.

Топологическими изоляторами называют недавно открытые вещества, у которых резко отличаются свойства электронов на поверхности и в глубине материала. В них, например, существуют такие направления, вдоль которых проведение тока происходит без затраты энергии. При этом внутри материал остается изолятором. 
Нужные услуги в нужный момент
{banner_819}{banner_825}
-30%
-20%
-40%
-20%
-10%
-50%
-10%
-50%