Подпишитесь на нашу ежедневную рассылку с новыми материалами

Наука


Ученым Великобритании, США, Иордании и Канады удалось, по их словам, добиться существенного прогресса в понимании механизма возникновения высокотемпературной сверхпроводимости. Свое исследование авторы опубликовали в журнале Nature, кратко с ним можно ознакомиться на сайте Кембриджского университета.
 
Игра "Дженга"
 
В своей работе ученые исследовали электронные конфигурации нормальных и сверхпроводящих состояний недодопированных высокотемпературных сверхпроводников (ВТСП) на основе купратов. В результате экспериментов физикам удалось локализовать очаг возникновения так называемых электронных карманов, и таким образом найти области в образце, которые отвечают за формирование сверхпроводящего состояния.
 
Также исследователи обнаружили необычную геометрию распределения карманов, в простейшем случае она похожа на стопку блоков из настольной игры "Дженга". Объединение "карманов" в большую поверхность Ферми соответствует переходу образца в сверхпроводящее состояние (постройке башни из игры "Дженга"), а его переход в нормальное состояние — разрушению башни из "Дженга".
 
В исследованиях ученые помещали образцы купратов в сильное магнитное поле. Магнитная индукция поля, способного подавить сверхпроводимость у ВТСП в образцах, достигала значений порядка ста тесла — это примерно в миллион раз больше индукции магнитного поля Земли.
 
Образцы, с которыми ученые проводили эксперименты, купраты — допированные специальным образом соединения оксида меди. Само допирование применяется для изменения электропроводящих свойств твердого тела, в данном случае — оксида меди, который вместе с пероксидом бария образует специальную слоистую структуру. Такая структура приводит к зависимости свойств образующегося кристалла от взаимной ориентации слоев (анизотропии), и в некоторых случаях позволяет управлять характеристиками нового соединения.
 
Ученые надеются, что материалы, имеющие структуру, аналогичную исследуемым, проявят хорошие сверхпроводящие свойства. Работа физиков вселяет оптимизм в перспективы изучения высокотемпературной сверхпроводимости в целом, исследование которой является одной из важнейших задач современной физики конденсированного состояния вещества. 
Нужные услуги в нужный момент
{banner_819}{banner_825}
-20%
-20%
-30%
-25%
-10%
-20%
-22%
-15%
-35%
-10%
-25%